Monday, May 25, 2020

Lonely Planet New Orleans

Visit Lonely Planet New Orleans


New Orleans St Louis Cathedral
St Louis Cathedral - New Orleans


Epicurean Appetite
When it comes to food, New Orleans does not fool around. Well, OK, it does: its playful attitude to ingredients and recipes mixes (for example) alligator sausage and cheesecake into a dessert fit for the gods. This sense of gastronomic play is rooted in both deep traditions – truly, this city has one of the few indigenous cuisines in the country – and a willingness to accommodate outside influences, both in terms of technique and ethnicity. New Orleans' cuisine is a mix of Caribbean, African and European influences that is truly unique.

Celebration Seasons
We're not exaggerating when we say there is either a festival or a parade every week of the year in New Orleans. Sometimes, such as during Mardi Gras or Jazz Fest, it feels like there’s a new party for every hour of the day. At almost any celebration in town, people engage in masking – donning a new appearance via some form of costuming – while acting out the satyric side of human behavior. But the celebrations and rituals of New Orleans are as much about history as hedonism, and every dance is as much an expression of tradition and community spirit as it is of joy.

Unceasing Song
New Orleans is the hometown of jazz, but neither the city nor the genre it birthed are museum pieces. Jazz is the root of American popular music, the daddy of rock, brother of the blues and not too distant ancestor of hip-hop – all styles of music that have defined the beat of global pop for decades. All these varieties of music, plus a few you may never have heard of, are practiced and played here on every corner, in any bar, every night of the week. Live music isn’t an event: it’s as crucial to the city soundscape as streetcar bells.

Candid Culture
There aren’t many places in the USA that wear their history as openly on their sleeves as New Orleans. This city’s very facade is an architectural study par excellence. And while Boston and Charleston can boast beautiful buildings, New Orleans has a lived-in grittiness that either feels intimidating or easily accessible. As a result of its visible history you'll find a constant, often painful, dialogue with the past, stretching back hundreds of years. It's a history that for all its controversy has produced a street culture that can be observed and grasped in a very visceral way.


Highlights in New Orleans

creole architecture

Creole Architecture of New Orleans


French Creole architecture is one of the nation's three major colonial architectural traditions. It takes its place alongside British Colonial, as exemplified by the saltbox houses of New England and a later generation of Georgian houses, and Spanish Colonial, as seen in the missions of California and the Southwest. The French-Creole building tradition appeared in New France, i.e., in the United States, the Mississippi Valley. Because the region was sparsely settled at the time, very little French Creole architecture was built outside Louisiana. And today Louisiana is home to the overwhelming majority of surviving examples.


Mardi Gras

Mardi Gras new orleans
The Holiday of Mardi Gras

The holiday of Mardi Gras is celebrated in all of Louisiana, including the city of New Orleans. Celebrations are concentrated for about two weeks before and through Shrove Tuesday, the day before Ash Wednesday (the start of lent in the Western Christian tradition). Usually there is one major parade each day (weather permitting); many days have several large parades. The largest and most elaborate parades take place the last five days of the Mardi Gras season. In the final week, many events occur throughout New Orleans and surrounding communities, including parades and balls (some of them masquerade balls).


Second Line

second line new orleans
Second Line New Orleans

The Second Line is a tradition in parades organized by Social, Aid and Pleasure Clubs (SAPCs) with a brass band parades in New Orleans, Louisiana, United States. The "main line" or "first line" is the main section of the parade, or the members of the SAPC with the parading permit as well as the brass band. The Second Line consists of people who follow the band to enjoy the music, dance, and engage in "community." The Second Line's style of traditional dance, in which participants dance and walk along with the SAPCs in an African-based, free-form style with parasols and handkerchiefs, is called "second-lining". It is one of the most African-retentive cultures in the United States. It has been called "the quintessential New Orleans art form – a jazz funeral without a body". Another significant difference from jazz funerals is that Second Line parades lack the slow hymns and dirges played at funerals (although some organizations may have the band play a solemn selection toward the start of the parade in memory of members who died since their last parade).

Crescent Park

crescent park new orleans
Crescent Park New Orleans

This unique public space provides breathtaking views of New Orleans, native landscaping, bike paths, a dog run and multi-use pavilions for all to enjoy.

Shopping on Magazine Street

magazine street new orleans
Magazine Street New Orleans
magazine street new orleans
Magazine Street New Orleans
Magazine Street is a major thoroughfare in New Orleans, Louisiana. Like Tchoupitoulas Street, St. Charles Avenue, and Claiborne Avenue, it follows the curving course of the Mississippi River. The street took its name from an ammunition magazine located in this vicinity during the 18th-century colonial period.

City Park

City Park New Orleans
City Park New Orleans

New Orleans City Park is filled with iconic oak trees, alligators, birds, beautiful art, and so much to do that you could spend an entire vacation exploring the city's largest green space.

St.Charles Streetcar

St.Charles Streetcar New Orleans
St.Charles Streetcar New Orleans

Riding along the Saint Charles Avenue streetcar is the kind of experience that a lot of us can go for – inexpensive and accomplished by sitting. And if the French Quarter starts to feel a bit crowded, the six-mile, tree-lined ride Uptown can offer tranquility and fun. Riding the streetcar also gives visitors the chance to cover a fair amount of ground, including glimpses of some of the city’s most elaborate houses, Loyola and Tulane Universities and Audubon Park. Add to this the chance to stop and have a cocktail or indulge in some quality eats, and the trip easily justifies a day.

Classic Cocktails

Classic Cocktails New Orleans
Classic Cocktails New Orleans

There are some classic cocktails invented in New Orleans. You should try these.
  • Sazerac 
  • Brandy Crusta
  • Brandy Milk Punch
  • Absinthe Frappé 
  • Ramos Gin Fizz
  • Café Brûlot 
  • Roffignac 
  • Cocktail à la Louisiane 
  • Vieux Carré 
  • Hurricane
  • Arnaud’s Special Cocktail 
  • Bywater

Experience New Orleans - Lonely Planet New Orleans Tours

  • Private New Orleans Cocktail Tour  - Starting at $218
  • Private New Orleans Jazz Tour - Starting at $135
  • New Orleans Swamp Boat and Plantations Tour - Starting at $182



Sources : 
lonelyplanet.com
nps.gov
wikipedia.org
eater.com

Tuesday, March 31, 2020

Contagion (2011)



Watch Now


Healthcare professionals, government officials and everyday people find themselves in the midst of a pandemic as the CDC works to find a cure.

Director: Steven Soderbergh
Writer: Scott Z. Burns
Stars: Matt Damon, Kate Winslet, Jude Law


Storyline

Soon after her return from a business trip to Hong Kong, Beth Emhoff dies from what is a flu or some other type of infection. Her young son dies later the same day. Her husband Mitch however seems immune. Thus begins the spread of a deadly infection. For doctors and administrators at the U.S. Centers for Disease Control, several days pass before anyone realizes the extent or gravity of this new infection. They must first identify the type of virus in question and then find a means of combating it, a process that will likely take several months. As the contagion spreads to millions of people worldwide, societal order begins to break down as people panic.



Watch NOW


Friday, March 27, 2020

An Epidemic Every 100 Years

1720 - 1820 - 1920 -2020 pandemic outbreak plague


Every hundred years, there seems to be a great pandemic, plague 1720, cholera epidemic 1820 and Spanish flu 1920.
The pandemics mentioned above seem to follow the same pattern as the current viral epidemic in China.

But history has really repeated itself, was this virus deliberately spread by an organization? Below, I will write a bit about the history of these pandemics:


The year 1720:

1720 plague pandemic outbreak

In 1720, there was the last large-scale bubonic plague pandemic, also called the great plague of Marseille. Records show that the bacteria killed around 100,000 people in Marseille.
It is assumed that the bacteria are spread by flies infected with this bacteria.


The year 1820:

1820 plague pandemic outbreak

The first records of a  cholera pandemic took place in 1820, which took place in Asia, in the countries of Thailand, Indonesia, and the Philippines. In 1820, more than 100,000 deaths were recorded in Asia due to this bacterium. The pandemic is said to have started with people who drank water from lakes contaminated with this bacteria.


The year 1920:

1920 plague pandemic outbreak

The  Spanish flu occurred 100 years ago, at the time people were struggling with the H1N1 flu virus which had undergone a genetic mutation, which made it much more dangerous than the virus normal. This virus infected 500 million people and killed more than 100 million people in the world, this pandemic was the deadliest in history.


The year 2020:
2020 plague pandemic outbreak

It seems like history repeats itself every 100 years, is it just a coincidence?
Today, China is facing a major pandemic, 5 Chinese cities of 11 million inhabitants are quarantined, completely isolated from the rest of the world.

The coronavirus, the virus that China faces, has already killed 774 people so far, despite the efforts of the government and other institutions to quarantine entire cities, it seems that the virus has managed to spread to beyond the Chinese borders.

corona virus affects to people

wearing mask outdoor covid 19

Monday, March 16, 2020

The History of Pandemics

As humans have spread across the world, so have infectious diseases. Even in this modern era, outbreaks are nearly constant, though not every outbreak reaches pandemic level as the Novel Coronavirus (COVID-19) has.

Today’s visualization outlines some of history’s most deadly pandemics, from the Antonine Plague to the current COVID-19 event.

Here are some of the major pandemics that have occurred over time:
NameTime periodType / Pre-human hostDeath toll
Antonine Plague165-180Believed to be either smallpox or measles5M
Japanese smallpox epidemic735-737Variola major virus1M
Plague of Justinian541-542Yersinia pestis bacteria / Rats, fleas30-50M
Black Death1347-1351Yersinia pestis bacteria / Rats, fleas200M
New World Smallpox Outbreak1520 – onwardsVariola major virus56M
Great Plague of London1665Yersinia pestis bacteria / Rats, fleas100,000
Italian plague1629-1631Yersinia pestis bacteria / Rats, fleas1M
Cholera Pandemics 1-61817-1923V. cholerae bacteria1M+
Third Plague1885Yersinia pestis bacteria / Rats, fleas12M (China and India)
Yellow FeverLate 1800sVirus / Mosquitoes100,000-150,000 (U.S.)
Russian Flu1889-1890Believed to be H2N2 (avian origin)1M
Spanish Flu1918-1919H1N1 virus / Pigs40-50M
Asian Flu1957-1958H2N2 virus1.1M
Hong Kong Flu1968-1970H3N2 virus1M
HIV/AIDS1981-presentVirus / Chimpanzees25-35M
Swine Flu2009-2010H1N1 virus / Pigs200,000
SARS2002-2003Coronavirus / Bats, Civets770
Ebola2014-2016Ebolavirus / Wild animals11,000
MERS2015-PresentCoronavirus / Bats, camels850
COVID-192019-PresentCoronavirus – Unknown (possibly pangolins)6,400 (as of Mar 15, 2020)

history of pandemics
history of pandemics

Source : visualcapitalist.com

Hidden diseases in ice waking up


This article was originally posted by Jasmin Fox-Skelly in 2017 for BBC Earth. Due to world recent events, we thought these details are very important for everyone.


Long-dormant bacteria and viruses, trapped in ice and permafrost for centuries, are reviving as Earth's climate warms.

bacteria and viruses trapped in ice

Throughout history, humans have existed side-by-side with bacteria and viruses. From the bubonic plague to smallpox, we have evolved to resist them, and in response, they have developed new ways of infecting us.

We have had antibiotics for almost a century, ever since Alexander Fleming discovered penicillin. In response, bacteria have responded by evolving antibiotic resistance. The battle is endless: because we spend so much time with pathogens, we sometimes develop a kind of natural stalemate.

However, what would happen if we were suddenly exposed to deadly bacteria and viruses that have been absent for thousands of years, or that we have never met before?

We may be about to find out. Climate change is melting permafrost soils that have been frozen for thousands of years, and as the soils melt they are releasing ancient viruses and bacteria that, having lain dormant, are springing back to life.

In August 2016, in a remote corner of Siberian tundra called the Yamal Peninsula in the Arctic Circle, a 12-year-old boy died and at least twenty people were hospitalized after being infected by anthrax.

The theory is that, over 75 years ago, a reindeer infected with anthrax died and its frozen carcass became trapped under a layer of frozen soil, known as permafrost. There it stayed until a heatwave in the summer of 2016, when the permafrost thawed.

This exposed the reindeer corpse and released infectious anthrax into nearby water and soil, and then into the food supply. More than 2,000 reindeer grazing nearby became infected, which then led to the small number of human cases.

The fear is that this will not be an isolated case.

As the Earth warms, more permafrost will melt. Under normal circumstances, superficial permafrost layers about 50cm deep melt every summer. But now global warming is gradually exposing older permafrost layers.

Frozen permafrost soil is the perfect place for bacteria to remain alive for very long periods of time, perhaps as long as a million years. That means melting ice could potentially open a Pandora's box of diseases.


glacier calving



The temperature in the Arctic Circle is rising quickly, about three times faster than in the rest of the world. As the ice and permafrost melt, other infectious agents may be released.

"Permafrost is a very good preserver of microbes and viruses because it is cold, there is no oxygen, and it is dark," says evolutionary biologist Jean-Michel Claverie at Aix-Marseille University in France. "Pathogenic viruses that can infect humans or animals might be preserved in old permafrost layers, including some that have caused global epidemics in the past."

In the early 20th Century alone, more than a million reindeer died from anthrax. It is not easy to dig deep graves, so most of these carcasses are buried close to the surface, scattered among 7,000 burial grounds in northern Russia.

However, the big fear is what else is lurking beneath the frozen soil.

People and animals have been buried in permafrost for centuries, so it is conceivable that other infectious agents could be unleashed. For instance, scientists have discovered fragments of RNA from the in corpses buried in mass graves in Alaska's tundra. Smallpox and the bubonic plague are also likely buried in Siberia.

1918 Spanish flu virus
1918 Spanish flu virus

In a 2011 study, Boris Revich and Marina Podolnaya wrote: "As a consequence of permafrost melting, the vectors of deadly infections of the 18th and 19th Centuries may come back, especially near the cemeteries where the victims of these infections were buried."
For instance, in the 1890s there was a major epidemic of smallpox in Siberia. One town lost up to 40% of its population. Their bodies were buried under the upper layer of permafrost on the banks of the Kolyma River. 120 years later, Kolyma's floodwaters have started eroding the banks, and the melting of the permafrost has speeded up this erosion process.

In a project that began in the 1990s, scientists from the State Research Center of Virology and Biotechnology in Novosibirsk have tested the remains of Stone Age people that had been found in southern Siberia, in the region of Gorny Altai. They have also tested samples from the corpses of men who had died during viral epidemics in the 19th Century and were buried in the Russian permafrost.

The researchers say they have found bodies with sores characteristic of the marks left by smallpox. While they did not find the smallpox virus itself, they have detected fragments of its DNA.

Certainly, it is not the first time that bacteria frozen in ice have come back to life.

In a 2005 study, NASA scientists successfully revived bacteria that had been encased in a frozen pond in Alaska for 32,000 years. The microbes, called Carnobacterium pleistocenium, had been frozen since the Pleistocene period when woolly mammoths still roamed the Earth. Once the ice melted, they began swimming around, seemingly unaffected.

Two years later, scientists managed to revive an 8-million-year-old bacterium that had been lying dormant in ice, beneath the surface of a glacier in the Beacon and Mullins valleys of Antarctica. In the same study, bacteria were also revived from ice that was over 100,000 years old.

However, not all bacteria can come back to life after being frozen in permafrost. Anthrax bacteria can do so because they form spores, which are extremely hardy and can survive frozen for longer than a century.

Other bacteria that can form spores, and so could survive in permafrost, include tetanus and Clostridium botulinum, the pathogen responsible for botulism: a rare illness that can cause paralysis and even prove fatal. Some fungi can also survive in permafrost for a long time.

Some viruses can also survive for lengthy periods.

In a 2014 study, a team led by Claverie revived two viruses that had been trapped in the Siberian permafrost for 30,000 years. Known as Pithovirus sibericum and Mollivirus sibericum, they are both "giant viruses", because unlike most viruses they are so big they can be seen under a regular microscope. They were discovered 100ft underground in coastal tundra.

Pithovirus sibericum
Pithovirus sibericum

Once they were revived, the viruses quickly became infectious. Fortunately for us, these particular viruses only infect single-celled amoebas. Still, the study suggests that other viruses, which really could infect humans, might be revived in the same way.

What's more, global warming does not have to directly melt permafrost to pose a threat. Because the Arctic sea ice is melting, the north shore of Siberia has become more easily accessible by sea. As a result, industrial exploitation, including mining for gold and minerals, and drilling for oil and natural gas, is now becoming profitable.

"At the moment, these regions are deserted and the deep permafrost layers are left alone," says Claverie. "However, these ancient layers could be exposed by the digging involved in mining and drilling operations. If viable virions are still there, this could spell disaster."

Giant viruses may be the most likely culprits for any such viral outbreak.

"Most viruses are rapidly inactivated outside host cells, due to light, desiccation, or spontaneous biochemical degradation," says Claverie. "For instance, if their DNA is damaged beyond possible repair, the virions will no longer be infectious. However, among known viruses, the giant viruses tend to be very tough and almost impossible to break open."

Claverie says viruses from the very first humans to populate the Arctic could emerge. We could even see viruses from long-extinct hominin species like Neanderthals and Denisovans, both of which settled in Siberia and were riddled with various viral diseases. Remains of Neanderthals from 30-40,000 years ago have been spotted in Russia. Human populations have lived there, sickened and died for thousands of years.

"The possibility that we could catch a virus from a long-extinct Neanderthal suggests that the idea that a virus could be 'eradicated' from the planet is wrong, and gives us a false sense of security," says Claverie. "This is why stocks of vaccine should be kept, just in case."

long-extinct Neanderthal
Neanderthals

Since 2014, Claverie has been analyzing the DNA content of permafrost layers, searching for the genetic signature of viruses and bacteria that could infect humans. He has found evidence of many bacteria that are probably dangerous to humans. The bacteria have DNA that encodes virulence factors: molecules that pathogenic bacteria and viruses produce, which increase their ability to infect a host.

Claverie's team has also found a few DNA sequences that seem to come from viruses, including herpes. However, they have not as yet found any trace of smallpox. For obvious reasons, they have not attempted to revive any of the pathogens.

It now seems that pathogens cut off from humans will emerge from other places too, not just ice or permafrost.

In February 2017, NASA scientists announced that they had found 10-50,000-year-old microbes inside crystals in a Mexican mine.
The bacteria were located in the Cave of the Crystals, part of a mine in Naica in northern Mexico. The cave contains many milky-white crystals of the mineral selenite, which formed over hundreds of thousands of years.

The bacteria were trapped inside small, fluid pockets of the crystals, but once they were removed they revived and began multiplying. The microbes are genetically unique and may well be new species, but the researchers are yet to publish their work.

Even older bacteria have been found in the Lechuguilla Cave in New Mexico, 1,000ft underground. These microbes have not seen the surface for over 4 million years.

The cave never sees sunlight, and it is so isolated that it takes about 10,000 years for water from the surface to get into the cave.
Despite this, the bacteria have somehow become resistant to 18 types of antibiotics, including drugs considered to be a "last resort" for fighting infections. In a study published in December 2016, researchers found that the bacteria, known as Paenibacillus sp. LC231, was resistant to 70% of antibiotics and was able to totally inactivate many of them.

As the bacteria have remained completely isolated in the cave for four million years, they have not come into contact with people or the antibiotic drugs used to treat human infections. That means its antibiotic resistance must have arisen in some other way.

The scientists involved believe that the bacteria, which does not harm humans, is one of many that have naturally evolved resistance to antibiotics. This suggests that antibiotic resistance has been around for millions or even billions of years.

Obviously, such ancient antibiotic resistance cannot have evolved in the clinic as a result of antibiotic use.

The reason for this is that many types of fungi, and even other bacteria, naturally produce antibiotics to gain a competitive advantage over other microbes. That is how Fleming first discovered penicillin: bacteria in a petri dish died after one became contaminated with an antibiotic-excreting mould.

In caves, where there is little food, organisms must be ruthless if they are to survive. Bacteria like Paenibacillus may have had to evolve antibiotic resistance in order to avoid being killed by rival organisms.

ice cave
glacier ice cave-Iceland

This would explain why the bacteria are only resistant to natural antibiotics, which come from bacteria and fungi and make up about 99.9% of all the antibiotics we use. The bacteria have never come across man-made antibiotics, so do not have a resistance to them.

"Our work, and the work of others, suggests that antibiotic resistance is not a novel concept," says microbiologist Hazel Barton of the University of Akron, Ohio, who led the study. "Our organisms have been isolated from surface species from 4-7 million years, yet the resistance that they have is genetically identical to that found in surface species. This means that these genes are at least that old, and didn't emerge from the human use of antibiotics for treatment."

Although Paenibacillus itself is not harmful to humans, it could in theory pass on its antibiotic resistance to other pathogens. However, as it is isolated beneath 400m of rock, this seems unlikely.

Nevertheless, natural antibiotic resistance is probably so prevalent that many of the bacteria emerging from melting permafrost may already have it. In line with that, in a 2011 study scientists extracted DNA from bacteria found in 30,000-year-old permafrost in the Beringian region between Russia and Canada. They found genes encoding resistance to beta-lactam, tetracycline and glycopeptide antibiotics.

How much should we be concerned about all this?

One argument is that the risk from permafrost pathogens is inherently unknowable, so they should not overtly concern us. Instead, we should focus on more established threats from climate change. For instance, as Earth warms northern countries will become more susceptible to outbreaks of "southern" diseases like malaria, cholera and dengue fever, as these pathogens thrive at warmer temperatures.

The alternative perspective is that we should not ignore risks just because we cannot quantify them.

"Following our work and that of others, there is now a non-zero probability that pathogenic microbes could be revived, and infect us," says Claverie. "How likely that is is not known, but it's a possibility. It could be bacteria that are curable with antibiotics, or resistant bacteria, or a virus. If the pathogen hasn't been in contact with humans for a long time, then our immune system would not be prepared. So yes, that could be dangerous."

Source: BBC Earth